Abstract
The Gauss–Bonnet curvature of order 2k is a generalization to higher dimensions of the Gauss–Bonnet integrand in dimension 2k, as the scalar curvature generalizes the two dimensional Gauss–Bonnet integrand. In this paper, we evaluate the first variation of the integrals of these curvatures seen as functionals on the space of all Riemannian metrics on the manifold under consideration. An important property of this derivative is that it depends only on the curvature tensor and not on its covariant derivatives. We show that the critical points of this functional once restricted to metrics with unit volume are generalized Einstein metrics and once restricted to a pointwise conformal class of metrics are metrics with constant Gauss–Bonnet curvature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Calculus of Variations and Partial Differential Equations
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.