Abstract
Let M be a planar embedded graph whose arcs meet transversally at the vertices; Let ?(M) be a strip-shaped domain around M, of width M except in a neighborhood of the singular points. Assume that the boundary of ?(M) is smooth. We consider the Ginzburg-Landau energy functional for superconductivity on ?(M). We prove that its minimizers converge in a suitable sense to the minimizers of a simpler functional on M. The supercurrents in ?(M) are shown to converge to one-dimensional currents in M.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.