Abstract
We study the Euler-Lagrange equation for several natural functionals defined on a conformal class of almost Hermitian metrics, whose expression involves the Lee form $\theta$ of the metric. We show that the Gauduchon metrics are the unique extremal metrics of the functional corresponding to the norm of the codifferential of the Lee form. We prove that on compact complex surfaces, in every conformal class there exists a unique metric, up to multiplication by a constant, which is extremal for the functional given by the $L^2$-norm of $dJ\theta$, where $J$ denotes the complex structure. These extremal metrics are not the Gauduchon metrics in general, hence we extend their definition to any dimension and show that they give unique representatives, up to constant multiples, of any conformal class of almost Hermitian metrics.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.