Abstract

The geometric theory of Lin constraints and variational principles in terms of Clebsch variables proposed recently by Cendra and Marsden [1987] will be generalized to include those systems defined not only on configuration spaces which are products of Lie groups and vector spaces but on configuration spaces which are principal bundles with structural group G. This generalization includes, for example, fluids with free boundaries, Yang-Mills fields, and it will be very useful, as it will be shown later, to illustrate some aspects of the theory of particles moving in a Yang-Mills field in both its variational and Hamiltonian aspects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.