Abstract
In a previous paper (1979)[1], the minimum potential energy principle and stationary complementary energy principle for nonlinear elasticity with finite displacement, together with various complete and incomplete generalized principles were studied. However, the statements and proofs of these principles were not so clearly stated about their constraint conditions and their Euler equations. In somecases, the Euler equations have been mistaken as constraint conditions. For example, the stress displacement relation should be considered as Euler equation in complementary energy principle but have been mistaken as constraint conditions in variation. That is to say, in the above mentioned paper, the number of constraint conditions exceeds the necessary requirement. Furthermore, in all these variational principles, the stress-strain relation never participate in the variation process as constraints, i.e., they may act as a constraint in the sense that, after the set of Euler equations is solved, the stress-strain relation may be used to derive the stresses from known strains, or to derive the strains from known stresses. This point was not clearly mentioned in the previous paper (1979)[1]. In this paper, the high order Lagrange multiplier method (1983)[2] is used to construct the corresponding generalized variational principle in more general form. Throughout this paper, V/.V. Novozhilov's results (1958)[3] for nonlinear elasticity are used.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.