Abstract

A nonperturbative approach based on the variational perturbation theory in quantum chromodynamics is developed. The variational series is different from the conventional perturbative expansion and can be used to go beyond the weak-coupling regime. The approach suggested takes into account the summation of threshold singularities and the involvement of nonperturbative light quark masses. Phenomenological applications of this approach to describe physical quantities connected with the hadronic τ-decay data: the Rτ ratio, the light-quark Adler function, and the smeared RΔ function are presented. The description of examined quantities includes an infrared region and, therefore, they cannot be directly calculated within the standard perturbation theory. It is shown that in spite of this fact the approach suggested gives a rather good result for these quantities down to the lowest energy scale.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call