Abstract

We present a variational approach for treating the Hubbard Hamiltonian in one, two and three dimensions. It is based on 2M-fermion wavefunctions which are allowed to form correlated spin-singlet pairs. Expressions for the ground state energy and correlation functions are derived in terms of general pair coefficient functions. The presented approach offers a convenient starting point for improved variational treatments that allow to include different specific types of pair correlations. We present first applications to the attractive and to the extended Hubbard model using a very simple ansatz for the pair coefficient functions. The ground state energy, chemical potential, order parameter, momentum distribution as well as spin-spin and density-density correlation functions follow from a system of coupled nonlinear equations that has to be solved selfconsistently. All quantities are given for arbitrary band-filling in one, two and three dimensions. Our results are compared with those of other approximations and for the one-dimensional case with the exact results of Krivnov and Ovchinnikov.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call