Abstract

Bayesian Neural Networks provide a tool to estimate the uncertainty of a neural network by considering a distribution over weights and sampling different models for each input. In this paper, we propose a method for uncertainty estimation in neural networks which, instead of considering a distribution over weights, samples outputs of each layer from a corresponding Gaussian distribution, parametrized by the predictions of mean and variance sub-layers. In uncertainty quality estimation experiments, we show that the proposed method achieves better uncertainty quality than other single-bin Bayesian Model Averaging methods, such as Monte Carlo Dropout or Bayes By Backpropagation methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.