Abstract
A necessary and sufficient condition for linear stability of inviscid parallel shear flow is formulated by developing a novel variational principle, where the velocity profile is assumed to be monotonic and analytic. It is shown that unstable eigenvalues of Rayleigh's equation (which is a non-self-adjoint eigenvalue problem) can be associated with positive eigenvalues of a certain self-adjoint operator. The stability is therefore determined by maximizing a quadratic form, which is theoretically and numerically more tractable than directly solving Rayleigh's equation. This variational stability criterion is based on the understanding of Kreĭn signature for continuous spectra and is applicable to other stability problems of infinite-dimensional Hamiltonian systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.