Abstract

In this study, a computational framework is proposed for thermomechanical contact and debonding problems with proper thermal resistance at the interface. Using the Variational Multiscale (VMS) framework, we present a fully coupled thermomechanical formulation with an explicit expression of the pressure at the contact interface. The formulation considers the quasi-static balance of the momentum and the transient heat transfer problem in a fully coupled fashion. At the interface, two different contact constitutive models are utilized for tension and compression. For tensile problems, in the mechanical phase, a tensile debonding model is employed, whereas in the thermal phase, the displacement-dependent model is employed. For compressive problems, in the mechanical phase, a Coulomb frictional model is employed while in the thermal phase, a pressure-dependent model is embedded. Because of the naturally derived interface stability terms that possess area- and stress-weighting, the proposed VMS formulation accommodates contact/debonding and contact/frictional sliding at the interface due to both thermal and mechanical loading without losing numerical stability. The proposed method is applied to a class of numerical test problems with discontinuity at the interfaces, and good agreement with analytical and numerical data is achieved.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call