Abstract

Electromyographic signals contaminated with noise during the acquisition process affect the results of follow-up applications such as disease diagnosis, motion recognition, gesture recognition, and human–computer interaction. This paper proposes a denoising technique based on the variational mode decomposition (VMD) for both surface electromyography signals (sEMG) and intramuscular electromyography signals (iEMG). sEMG and iEMG obtained from 5 healthy subjects were first decomposed using VMD into respective variational mode functions (VMFs), then thresholds were set to remove the noise, and finally, the denoised signal was reconstructed. The denoising efficacy of interval thresholding (IT) and iterative interval thresholding (IIT) techniques in combination with SOFT, HARD, and smoothly clipped absolute deviation (SCAD) thresholding operators was quantitatively evaluated by using Signal to Noise Ratio (SNR) and further statistically validated by Friedman test. The results demonstrated that IIT provides better SNR values than IT at all noise levels (P-value < 0.05) for sEMG signals. For iEMG, IIT outperformed IT at 0db and 5db noise levels, but at a noise level of 10db and 15db, IT outperformed IIT. However, the results for the 10db noise level were statistically insignificant. The SOFT thresholding operator outperforms HARD and SCAD at all noise levels for sEMG, as well as iEMG (P-value < 0.05). The study demonstrates that the combination of the IIT thresholding technique with the VMD-based SOFT thresholding operator yields the best denoising results while retaining the original signal characteristics. The proposed method can be used in the fields of disease diagnosis, pattern recognition, and movement classification.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.