Abstract

This work presents a new epileptic seizures epoch classification scheme. Variational mode decomposition (VMD), has been explored for non-recursively decomposing the electroencephalogram (EEG) signals into fourteen band limited intrinsic mode functions (IMFs). Data augmentation (DA), has been used for handling unbalanced classification problem. Normalized energy, fractal dimension, number of peaks, and prominence parameters were computed from the band-limited IMFs for the discrimination of seizure and non-seizure epochs. Bayesian regularized shallow neural network (BR-SNNs) and six other well-known classifiers were tested. Sensitivity, specificity, and accuracy have been used as performance metrics. This study includes two different epoch lengths of 1-second and 2-seconds. A total of 32 test cases for both, class balanced and unbalanced classification problems have been taken for the performance evaluation. The best performance obtained is 100% for all the three metrics from the test cases of database-2 and 3. For database-1, average sensitivity, specificity, and accuracy of 99.71, 99.75, and 99.73% have been achieved, respectively for the 1-second epoch. The presented work shows better performance results compared to many previously reported works.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.