Abstract

This Chapter deals with general techniques for studying the existence and multiplicity of critical points of nondifferentiable functionals in the so-called limit case (see Remark 3.1). There are proved nonsmooth versions of several celebrated results like: Deformation Lemma, Mountain Pass Theorem, Saddle Point Theorem, Generalized Mountain Pass Theorem. First, we present a general deformation result for nonsmooth functionals which can be expressed as a sum of a locally Lipschitz function and a concave, proper, upper semicontinuous function. Then we give a general minimax principle for nonsmooth functionals which can be expressed as a sum of a locally Lipschitz function and a convex, proper, lower semicontinuous functional. Here we are concerned with the limit case (i.e. the equality c = a, see Remark 3.1), obtaining results which are complementary to the minimax principles in Section 2 of Chapter 2. These general results are applied in the second Section of this Chapter for proving existence, multiplicity and location of solutions to various boundary value and unilateral problems with discontinuous nonlinearities.KeywordsVariational MethodCritical Point TheoryHemivariational InequalityFinite CoveringMountain Pass TheoremThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.