Abstract

In the present paper we investigate the inverse problem of identifying simultaneously the diffusion matrix, source term and boundary condition in the Neumann boundary value problem for an elliptic partial differential equation (PDE) from a measurement data, which is weaker than required of the exact state. A variational method based on energy functions with Tikhonov regularization is here proposed to treat the identification problem. We discretize the PDE with the finite element method and prove the convergence as well as analyze error bounds of this approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.