Abstract

We develop heuristic derivations of two alternative principles of least action. A particle moving in one dimension can reverse direction at will if energy conservation is the only criterion. Such arbitrary changes in the direction of motion are eliminated by demanding that the Maupertuis–Euler abbreviated action, equal to the area under the momentum versus position curve in phase space, has the smallest possible value consistent with conservation of energy. Minimizing the abbreviated action predicts particle trajectories in two and three dimensions and leads to the more powerful Hamilton principle of least action, which not only generates conservation of energy, but also predicts motion even when the potential energy changes with time. Introducing action early in the physics program requires modernizing the current obscure and confusing terminology of variational mechanics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.