Abstract

Variational methods are becoming increasingly popular for inference and learning in probabilistic models. By providing bounds on quantities of interest, they offer a more controlled approximation framework than techniques such as Laplace’s method, while avoiding the mixing and convergence issues of Markov chain Monte Carlo methods, or the possible computational intractability of exact algorithms. In this paper we review the underlying framework of variational methods and discuss example applications involving sigmoid belief networks, Boltzmann machines and feed-forward neural networks.KeywordsPosterior DistributionGraphical ModelHide VariableExpectation Maximization AlgorithmMarkov Chain Monte Carlo MethodThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.