Abstract

In this paper, we propose a Bayesian nonparametric approach for modeling and selection based on a mixture of Dirichlet processes with Dirichlet distributions, which can also be seen as an infinite Dirichlet mixture model. The proposed model uses a stick-breaking representation and is learned by a variational inference method. Due to the nature of Bayesian nonparametric approach, the problems of overfitting and underfitting are prevented. Moreover, the obstacle of estimating the correct number of clusters is sidestepped by assuming an infinite number of clusters. Compared to other approximation techniques, such as Markov chain Monte Carlo (MCMC), which require high computational cost and whose convergence is difficult to diagnose, the whole inference process in the proposed variational learning framework is analytically tractable with closed-form solutions. Additionally, the proposed infinite Dirichlet mixture model with variational learning requires only a modest amount of computational power which makes it suitable to large applications. The effectiveness of our model is experimentally investigated through both synthetic data sets and challenging real-life multimedia applications namely image spam filtering and human action videos categorization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.