Abstract
Discrete choice models are commonly used by applied statisticians in numerous fields, such as marketing, economics, finance, and operations research. When agents in discrete choice models are assumed to have differing preferences, exact inference is often intractable. Markov chain Monte Carlo techniques make approximate inference possible, but the computational cost is prohibitive on the large datasets now becoming routinely available. Variational methods provide a deterministic alternative for approximation of the posterior distribution. We derive variational procedures for empirical Bayes and fully Bayesian inference in the mixed multinomial logit model of discrete choice. The algorithms require only that we solve a sequence of unconstrained optimization problems, which are shown to be convex. One version of the procedures relies on a new approximation to the variational objective function, based on the multivariate delta method. Extensive simulations, along with an analysis of real-world data, demonstrate that variational methods achieve accuracy competitive with Markov chain Monte Carlo at a small fraction of the computational cost. Thus, variational methods permit inference on datasets that otherwise cannot be analyzed without possibly adverse simplifications of the underlying discrete choice model. Appendices C through F are available as online supplemental materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.