Abstract
This paper proposes a new variational approximation for infinite mixtures of Gaussian processes. As an extension of the single Gaussian process regression model, mixtures of Gaussian processes can characterize varying covariances or multimodal data and reduce the deficiency of the computationally cubic complexity of the single Gaussian process model. The infinite mixture of Gaussian processes further integrates a Dirichlet process prior to allowing the number of mixture components to automatically be determined from data. We use variational inference and a truncated stick-breaking representation of the Dirichlet process to approximate the posterior of hidden variables involved in the model. To fix the hyperparameters of the model, the variational EM algorithm and a greedy algorithm are employed. In addition to presenting the variational infinite-mixture model, we apply it to the problem of traffic flow prediction. Experiments with comparisons to other approaches show the effectiveness of the proposed model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Intelligent Transportation Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.