Abstract
AbstractVariational Bayesian inference is an important machine learning tool that finds application from statistics to robotics. The goal is to find an approximate probability density function (PDF) from a chosen family that is in some sense “closest” to the full Bayesian posterior. Closeness is typically defined through the selection of an appropriate loss functional such as the Kullback-Leibler (KL) divergence. In this paper, we explore a new formulation of variational inference by exploiting the fact that (most) PDFs are members of a Bayesian Hilbert space under careful definitions of vector addition, scalar multiplication, and an inner product. We show that, under the right conditions, variational inference based on KL divergence can amount to iterative projection, in the Euclidean sense, of the Bayesian posterior onto a subspace corresponding to the selected approximation family. We work through the details of this general framework for the specific case of the Gaussian approximation family and show the equivalence to another Gaussian variational inference approach. We furthermore discuss the implications for systems that exhibit sparsity, which is handled naturally in Bayesian space, and give an example of a high-dimensional robotic state estimation problem that can be handled as a result. We provide some preliminary examples of how the approach could be applied to non-Gaussian inference and discuss the limitations of the approach in detail to encourage follow-on work along these lines.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.