Abstract

In many real world dynamical systems, the inherent noise levels are not constant but depend on the state. Such aspects are often ignored in modelling because they make inference significantly more complicated. In this paper we propose a variational inference and learning algorithm for a non-linear state-space model with state-dependent observation noise. The observation noise level of each sample depends on additional latent variables with a linear dependence on the latent state. The method yields significant improvements in predictive performance over regular nonlinear state-space model as well as direct autoregressive prediction using Gaussian processes in a simulated Lorenz system with state-dependent noise and in stock price prediction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.