Abstract
One of the driving forces in porous media flow is the capillary pressure. In standard models, it is given depending on the saturation. However, recent experiments have shown disagreement between measurements and numerical solutions using such simple models. Hence, we consider in this paper two extensions to standard capillary pressure relationships. Firstly, to correct the nonphysical behavior, we use a recently established saturation-dependent retardation term. Secondly, in the case of heterogeneous porous media, we apply a model with a capillary threshold pressure that controls the penetration process. Mathematically, we rewrite this model as inequality constraint at the interfaces, which allows discontinuities in the saturation and pressure. For the standard model, often finite-volume schemes resulting in a nonlinear system for the saturation are applied. To handle the enhanced model at the interfaces correctly, we apply a mortar discretization method on nonmatching meshes. Introducing the flux as a new variable allows us to solve the inequality constraint efficiently. This method can be applied to both the standard and the enhanced capillary model. As nonlinear solver, we use an active set strategy combined with a Newton method. Several numerical examples demonstrate the efficiency and flexibility of the new algorithm in 2D and 3D and show the influence of the retardation term.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.