Abstract

Restoring and segmenting images corrupted by Rician noise are now challenging issues in the field of medical image processing. Our previously proposed restoration model, which is based on the statistical property of Rician noise, was proven efficient only when the standard variation of Rician noise in the image is greater than a certain positive number. The present paper further theoretically proves that this certain positive number can be replaced by zero, i.e., the standard variation of Rician noise can be any positive value. This broadens its application range. In addition, the data-fidelity term in the proposed restoration model can be applied into the famous two-stage segmentation method for segmenting images corrupted by Rician noise. In the first stage, a new variant of modified Mumford–Shah model is established with whose data-fidelity term is designed to manipulate Rician noise in the image. The strict convexity holds for this optimization model and linearized primal-dual algorithm with theoretical convergence analysis can be implemented for achieving the global optimal solution. For the second stage, partition on the optimal smooth cartoon image is done simply by thresholding. Such two-stage segmentation method is apparently more suitable for image with Rician noise compared to other state-of-art algorithms. Numerical experiments are conducted on both synthetic and real images. The results suggest that the proposed method is more favorable for image segmentation task with Rician noise.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.