Abstract

The simulation of time evolution of large quantum systems is a classically challenging and in general intractable task, making it a promising application for quantum computation. A Trotter–Suzuki approximation yields an implementation thereof, where a higher approximation accuracy can be traded for an increased gate count. In this work, we introduce a variational algorithm which uses solutions of classical optimizations to predict efficient quantum circuits for time evolution of translationally invariant quantum systems. Our strategy can improve upon the Trotter–Suzuki accuracy by several orders of magnitude. It translates into a reduction in gate count and hence gain in overall fidelity at the same algorithmic accuracy. This is important in noisy intermediate scale quantum-applications where the fidelity of the output state decays exponentially with the number of gates. The performance advantage of our classical assisted strategy can be extended to open boundaries with translational symmetry in the bulk. We can extrapolate our method to beyond classically simulatable system sizes, maintaining its total fidelity advantage over a Trotter–Suzuki approximation making it an interesting candidate for beyond classical time evolution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.