Abstract

The existing graph convolution methods usually suffer high computational burdens, large memory requirements, and intractable batch-processing. In this paper, we propose a high-efficient variational gridded graph convolution network (VG-GCN) to encode non-regular graph data, which overcomes all these aforementioned problems. To capture graph topology structures efficiently, in the proposed framework, we propose a hierarchically-coarsened random walk (hcr-walk) by taking advantage of the classic random walk and node/edge encapsulation. The hcr-walk greatly mitigates the problem of exponentially explosive sampling times which occur in the classic version, while preserving graph structures well. To efficiently encode local hcr-walk around one reference node, we project hcr-walk into an ordered space to form image-like grid data, which favors those conventional convolution networks. Instead of the direct 2-D convolution filtering, a variational convolution block (VCB) is designed to model the distribution of the random-sampling hcr-walk inspired by the well-formulated variational inference. We experimentally validate the efficiency and effectiveness of our proposed VG-GCN, which has high computation speed, and the comparable or even better performance when compared with baseline GCNs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.