Abstract

With the success of Graph Neural Network (GNN) in network data, some GNN-based representation learning methods for networks have emerged recently. Variational Graph Autoencoder (VGAE) is a basic GNN framework for network representation. Its purpose is to well preserve the topology and node attribute information of the network to learn node representation, but it only reconstructs network topology, and does not consider the reconstruction of node features. This strategy will make node representation can not well reserve node features information, impairing the ability of the VGAE method to learn higher quality representations. To solve this problem, we arise a new network representation method to improve the VGAE method for well retaining both node features and network structure information. The method utilizes adversarial mutual information learning to maximize the mutual information (MI) of node features and node representations during the encoding process of the variational autoencoder, which forces the variational encoder to get the representation containing the most informative node features. The method consists of three parts: a variational graph autoencoder includes a variational encoder (MI generator (G)) and a decoder, a positive MI sample module (maximizing MI module), and an MI discriminator (D). Furthermore, we explain why maximizing MI between node features and node representation can reconstruct node attributes. Finally, we conduct experiments on seven public representative datasets for nodes classification, nodes clustering, and graph visualization tasks. Experimental results demonstrate that the proposed algorithm significantly outperforms current popular network representation algorithms on these tasks. The best improvement is 17.13% than the VGAE method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.