Abstract

As a first step, variational formulations and governing equations with boundary conditions are derived for a pair of Euler–Bernoulli beam bending models following a simplified version of Mindlin’s strain gradient elasticity theory of form II. For both models, this leads to sixth-order boundary value problems with new types of boundary conditions that are given additional attributes singly and doubly, referring to a physically relevant distinguishing feature between free and prescribed curvature, respectively. Second, the variational formulations are analyzed with rigorous mathematical tools: the existence and uniqueness of weak solutions are established by proving continuity and ellipticity of the associated symmetric bilinear forms. This guarantees optimal convergence for conforming Galerkin discretization methods. Third, the variational analysis is extended to cover two other generalized beam models: another modification of the strain gradient elasticity theory and a modified version of the couple stress theory. A model comparison reveals essential differences and similarities in the physicality of these four closely related beam models: they demonstrate essentially two different kinds of parameter-dependent stiffening behavior, where one of these kinds (possessed by three models out of four) provides results in a very good agreement with the size effects of experimental tests. Finally, numerical results for isogeometric Galerkin discretizations with B-splines confirm the theoretical stability and convergence results. Influences of the gradient and thickness parameters connected to size effects, boundary layers and dispersion relations are studied thoroughly with a series of benchmark problems for statics and free vibrations. The size-dependency of the effective Young’s modulus is demonstrated for an auxetic cellular metamaterial ruled by bending-dominated deformation of cell struts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.