Abstract

The structural boundary-value problem in the context of nonlocal (integral) elasticity and quasi-static loads is considered in a geometrically linear range. The nonlocal elastic behaviour is described by the so-called Eringen model in which the nonlocality lies in the constitutive relation. The diffusion processes of the nonlocality are governed by an integral relation containing a recently proposed symmetric spatial weight function expressed in terms of an attenuation function. A firm variational basis to the nonlocal model is given by providing the complete set of variational formulations, composed by ten functionals with different combinations of the state variables. In particular the nonlocal counterpart of the classical principles of the total potential energy, complementary energy and mixed Hu–Washizu principle and Hellinger–Reissner functional are recovered. Some examples concerning a piecewise bar in tension are provided by using the Fredholm integral equation and the proposed nonlocal FEM.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.