Abstract
Recently, deep learning approaches have been successfully used for ultrasound (US) image artifact removal. However, paired high-quality images for supervised training are difficult to obtain in many practical situations. Inspired by the recent theory of unsupervised learning using optimal transport driven CycleGAN (OT-CycleGAN), here, we investigate the applicability of unsupervised deep learning for US artifact removal problems without matched reference data. Two types of OT-CycleGAN approaches are employed: one with the partial knowledge of the image degradation physics and the other with the lack of such knowledge. Various US artifact removal problems are then addressed using the two types of OT-CycleGAN. Experimental results for various unsupervised US artifact removal tasks confirmed that our unsupervised learning method delivers results comparable to supervised learning in many practical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: IEEE transactions on ultrasonics, ferroelectrics, and frequency control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.