Abstract

On the basis of gauge principle in the field theory, a new variational formulation is presented for flows of an ideal fluid. The fluid is defined thermodynamically by mass density and entropy density, and its flow fields are characterized by symmetries of translation and rotation. A structure of rotation symmetry is equipped with a Lagrangian Λ A including vorticity, in addition to Lagrangians of translation symmetry. From the action principle, Euler’s equation of motion is derived. In addition, the equations of continuity and entropy are derived from the variations. Equations of conserved currents are deduced as the Noether theorem in the space of Lagrangian coordinate a . It is shown that, with the translation symmetry alone, there is freedom in the transformation between the Lagrangian a -space and Eulerian x -space. The Lagrangian Λ A provides non-trivial topology of vorticity field and yields a source term of the helicity. The vorticity equation is derived as an equation of the gauge field. The present formulation provides a basis on which the transformation between the a space and the x space is determined uniquely.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.