Abstract
Let A be an elliptic (partial) differential operator of order 2m on a compact manifold with boundary Г. Let B be a normal system of m differential boundary operators on Г. Assume all manifolds and coefficients are arbitrarily smooth. We construct sesquilinear forms J in terms of which there are equivalent variational formulations of the natural boundary value problems determined by A and B with solutions in Sobolev spaces HS (M), 0 < s < 2m. Such forms are also constructed for problems with mixed boundary conditions. The variational formulation permits localization of a priori estimates and the interchange of existence and uniqueness questions between the boundary value problem and an associated adjoint problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.