Abstract

AbstractA new equation of motion that governs weakly nonlinear phenomena in ideal magnetohydrodynamics (MHDs) is derived as a natural extension of the well-known linearized equation of motion for the displacement field. This derivation is made possible by expanding the MHD Lagrangian explicitly up to third order with respect to the displacement of plasma, which necessitates an efficient use of the Lie series expansion. The resultant equation of motion (i.e. the Euler–Lagrange equation) includes a new quadratic force term which is responsible for various mode–mode coupling due to the MHD nonlinearity. The third-order potential energy serves to quantify the coupling coefficient among resonant three modes and its cubic symmetry proves the Manley–Rowe relations. In contrast to earlier works, the coupling coefficient is expressed only by the displacement vector field, which is already familiar in the linear MHD theory, and both the fixed and free boundary cases are treated systematically.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.