Abstract

This paper presents an existence theory for solitary waves at the interface between a thin ice sheet (modelled using the Cosserat theory of hyperelastic shells) and an ideal fluid (of finite depth and in irrotational motion) for sufficiently large values of a dimensionless parameter γ. We establish the existence of a minimiser of the wave energy E subject to the constraint I=2μ, where I is the horizontal impulse and 0<μ≪1, and show that the solitary waves detected by our variational method converge (after an appropriate rescaling) to solutions to the nonlinear Schrödinger equation with cubic focussing nonlinearity as μ↓0.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.