Abstract
We introduce and discuss discrete two-dimensional models for XY spin systems and screw dislocations in crystals. We prove that, as the lattice spacing e tends to zero, the relevant energies in these models behave like a free energy in the complex Ginzburg-Landau theory of superconductivity, justifying in a rigorous mathematical language the analogies between screw dislocations in crystals and vortices in superconductors. To this purpose, we introduce a notion of asymptotic variational equivalence between families of functionals in the framework of Γ-convergence. We then prove that, in several scaling regimes, the complex Ginzburg-Landau, the XY spin system and the screw dislocation energy functionals are variationally equivalent. Exploiting such an equivalence between dislocations and vortices, we can show new results concerning the asymptotic behavior of screw dislocations in the | log e| energetic regime.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.