Abstract

We derive a variational approach for discretizing fluid–structure interactions, with a particular focus on the dynamics of fluid-conveying elastic tubes. Our method is based on a discretization of the fluid's back-to-labels map and a Lie group discretization of the tube's variables, coupled with an appropriately formulated discrete version of the fluid conservation law. This approach allows the development of geometric numerical schemes for the dynamics of fluid-conveying collapsible tubes, which preserve several intrinsic geometric properties of the continuous system, such as symmetries and symplecticity. In addition, our approach can also be used to derive simplified, but geometrically consistent, low-component models for further analytical and numerical analysis of the system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.