Abstract
The aim of this paper is twofold. First, we propose a new method for enhancing the contrast of gray-value images. We use the difference of the average local contrast measures between the original and the enhanced images within a variational framework. This enables the user to intuitively control the contrast level and the scale of the enhanced details. Moreover, our model avoids large modifications of the original image histogram. Thereby it preserves the global illumination of the scene and it can cope with large areas having similar gray values. The minimizer of the proposed functional is computed by a gradient descent algorithm in connection with a polynomial approximation of the average local contrast measure. The polynomial approximation is computed via Bernstein polynomials. In the second part, the approach is extended to a variational enhancement method for color images. The model approximately preserves the hue of the original image and additionally includes a total variation term to correct the possible noise. The method requires no post- or preprocessing. The minimization problem is solved with a hybrid primal---dual algorithm. Experiments demonstrate the efficiency and the flexibility of the proposed approaches in comparison with state-of-the-art methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.