Abstract

Motivated by recent experiments on Sr2IrO4, the ground state magnetic and electronic structures are studied theoretically for a two-dimensional three-band Hubbard model with strong spin-orbit coupling. To treat spin-orbit coupling, local Coulomb interactions, and band structure effects on the same footing, the variational cluster approximation based on the self-energy functional theory is employed. It is found that for a relatively large coupling region, the ground state is an anisotropic antiferromagnetic Mott insulator of an effective local angular momentum Jeff = 1/2 with xy plane as an easy plane. This anisotropy is caused by the strong spin-orbit coupling along with the inter-orbital Hund's coupling. The momentum resolved one-particle excitations are also studied for the Mott insulating phase. It is found that the low-energy one-particle excitations consist mostly of the Jeff = 1/2 state, a direct evidence of a novel Jeff = 1/2 Mott insulator.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.