Abstract

We extend the variational cluster approach to deal with strongly correlated lattice bosons in the superfluid phase. To this end, we reformulate the approach within a pseudoparticle formalism, whereby cluster excitations are described by particlelike excitations. The approximation amounts to solving a multicomponent noninteracting bosonic system by means of a multimode Bogoliubov approximation. A source-and-drain term is introduced in order to break U(1) symmetry at the cluster level. We provide an expression for the grand potential, the single-particle normal and anomalous Green's functions, the condensate density, and other static quantities. As a first nontrivial application of the method we choose the two-dimensional Bose-Hubbard model and evaluate results in both the Mott and the superfluid phases. Our results show an excellent agreement with quantum Monte Carlo calculations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.