Abstract

We propose a new variational method for describing nuclear matter from nucleon-nucleon interaction. We use the unitary correlation operator method (UCOM) for central correlation to treat the short-range repulsion and further include the two-particle two-hole (2p2h) excitations of nucleon pair involving a large relative momentum, which is called 'high-momentum pair'(HM). We describe nuclear matter in finite size with finite particle number on periodic boundary condition and increase the 2p2h configurations until we get the convergence of the total energy per particle. We demonstrate the validity of this 'UCOM+HM' framework by applying it to the symmetric nuclear and neutron matters with the Argonne V4$^\prime$ potential having short-range repulsion. The nuclear equations of state obtained in UCOM+HM are fairly consistent to those of other calculations such as Brueckner-Hartree-Fock and auxiliary field diffusion Monte Carlo in the overall density region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.