Abstract
A network-based method applied to collaborative filtering in recommender systems is introduced in this paper. Specifically, a novel mixed-membership stochastic block model with a conjugate prior from the exponential family is proposed for bipartite networks. The analytical expression of the model is derived, and a variational Bayesian algorithm that is computationally feasible for approximating the untractable posterior distributions is presented. Extensive simulations show that the proposed model provides more accurate inference than competing methods with the presence of outliers. The proposed model is also applied to a MovieLens dataset for a real data application.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.