Abstract

In topic modeling framework, many Dirichlet-based models performances have been hindered by the limitations of the conjugate prior. It led to models with more flexible priors, such as the generalized Dirichlet distribution, that tend to capture semantic relationships between topics (topic correlation). Now these extensions also suffer from incomplete generative processes that complicate performances in traditional inferences such as VB (Variational Bayes) and CGS (Collaspsed Gibbs Sampling). As a result, the new approach, the CVB-LGDA (Collapsed Variational Bayesian inference for the Latent Generalized Dirichlet Allocation) presents a scheme that integrates a complete generative process to a robust inference technique for topic correlation and codebook analysis. Its performance in image classification, facial expression recognition, 3D objects categorization, and action recognition in videos shows its merits.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.