Abstract

Stable estimation of rigid body motion states from noisy measurements, without any knowledge of the dynamics model, is treated using the Lagrange-d’ Alembert principle from variational mechanics. From body-fixed sensor measurements, a Lagrangian is obtained as the difference between a kinetic energy-like term that is quadratic in velocity estimation errors and an artificial potential function of pose (attitude and position) estimation errors. An additional dissipation term that is linear in the velocity estimation errors is introduced, and the Lagrange-d’ Alembert principle is applied to the Lagrangian with this dissipation. This estimation framework is shown to be almost globally asymptotically stable in the state space of rigid body motions. It is discretized for computer implementation using the discrete Lagrange-d’ Alembert principle, as a first order Lie group variational integrator. In the presence of bounded measurement noise from sensors, numerical simulations show that the estimated states converge to a bounded neighborhood of the actual states. Ongoing and future work will explore finite-time stable extensions of this framework for nonlinear observer design, with applications to rigid body and multi-body systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.