Abstract

Abstract In this paper, we consider a regular Fractional Sturm–Liouville Problem (FSLP) of order μ (0 < μ < 1). We approximate the eigenvalues and eigenfunctions of the problem using a fractional variational approach. Recently, Klimek et al. [16] presented the variational approach for FSLPs defined in terms of Caputo derivatives and obtained eigenvalues, eigenfunctions for a special range of fractional order 1/2 < μ < 1. Here, we extend the variational approach for the FSLPs and approximate the eigenvalues and eigenfunctions of the FSLP for fractional-order μ (0 < μ < 1). We also prove that the FSLP has countably infinite eigenvalues and corresponding eigenfunctions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.