Abstract

Tunneling problems are characterized by different quantum time scales of motion. In this paper, we identify a tunneling time scale, which is based on a simple variational principle. The method utilizes the stationary eigenfunctions for a given one-dimensional potential structure, and it provides a truly local definition of the tunneling time, independent of the asymptotic shape of the potential. We express the minimum tunneling time in terms of the more common time scales obtained from the Larmor clock setup. Asymptotic formulas for both the extreme quantum and the semiclassical limit are presented. As an experimental verification of the variational approach we demonstrate that the minimum tunneling time governs the time a particle requires to traverse the barrier in a symmetric double-well structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.