Abstract
We associate a multiparameter spectral problem in a real Euclidean space with a variational problem of finding a minimum of a certain functional. We establish the equivalence of the spectralproblem and the variational problem. On the basis of the gradient procedure, we propose a numerical algorithm for the determination of its eigenvalues and eigenvectors. The local convergence of the algorithm is proved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.