Abstract

We apply parquet-diagram summation methods for the calculation of the superfluid gap in $S$-wave pairing in neutron matter for realistic nucleon-nucleon interactions such as the Argonne $v_6$ and the Reid $v_6$ potentials. It is shown that diagrammatic contributions that are outside the parquet class play an important role. These are, in variational theories, identified as so-called "commutator contributions". Moreover, using a particle-hole propagator appropriate for a superfluid system results in the suppression of the spin-channel contribution to the induced interaction. Applying these corrections to the pairing interaction, our results agree quite well with Quantum Monte Carlo data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.