Abstract

Variation propagation has been successfully modeled by the Stream of Variation (SoV) approach in multistage machining processes. However, the SoV model basically supports 3-2-1 fixtures based on punctual locators and other workholding systems such as conventional vises are not considered yet. In this paper, the SoV model is expanded to include the fixture- and datum-induced variations on workholding devices such as bench vises. The model derivation is validated through assembly and machining simulations on Computer Aided Design software. The case study analyzed shows an average error of part quality prediction between the SoV model and the CAD simulations of 0.26%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call