Abstract

The singular integral equation method is applied to the calculation of the stress intensity factor at the front of a rectangular crack subjected to mixed-mode load. The stress field induced by a body force doublet is used as a fundamental solution. The problem is formulated as a system of integral equations with r−3-singularities. In solving the integral equations, unknown functions of body-force densities are approximated by the product of polynomial and fundamental densities. The fundamental densities are chosen to express two-dimensional cracks in an infinite body for the limiting cases of the aspect ratio of the rectangle. The present method yields rapidly converging numerical results and satisfies boundary conditions all over the crack boundary. A smooth distribution of the stress intensity factor along the crack front is presented for various crack shapes and different Poisson's ratio.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.