Abstract

In this work, mathematical modeling of the autothermal reforming of hexadecane, propane and methane on catalytic blocks of different geometric shapes was carried out. It was shown that the convex shape of the block towards the oncoming reaction flow can increase the maximum temperature in the frontal zone, while the concave shape contributes to a more uniform temperature distribution along the entire length of the catalytic layer. The work also investigated the effect of the reaction flow rate on the change in the temperature gradient, which can subsequently be used to prevent the formation of hot spots and catalyst deactivation. The results obtained can serve as the basis for future research in the field of autothermal reforming and optimization of the geometric parameters of catalysts for the conversion of hydrocarbon fuels into synthesis gas.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.