Abstract

An experimental investigation was made of variation of the characteristics of infrared multiphoton absorption in a homologous series of CnH2n+1OH alcohols (n = 1–5) excited with CO2 laser pulses. The dependences of the energy absorbed by the molecules on the frequency and energy density of laser radiation were determined by the optoacoustic method. It was found that the multiphoton absorption cross section decreases on increase in the radiation energy density at a rate which becomes slower on increase in the molecular size. A model is proposed for multiphoton excitation of molecules in a homologous series. This model is based on an analysis of a resonant mode interacting with the infrared radiation field and coupled to a reservoir of modes that do not interact with the field. The model predicts correctly the change in the multiphoton absorption cross section on increase in the number of the degrees of freedom of a molecule.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.